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1 Introduction

1.1 Multiple Kernel Learning Problem

Multiple kernel learning (MKL) (Bach et al. [2004]) is the process of finding an optimal kernel from a pre-
scribed (convex) set K of basis kernels, for learning a real-valued function by regularization. In this setting,
we consider a RKHS H = H1 ⊕ H2 · · · ⊕ HM with reproducting kernel k ∈ K = {

∑M
i=1 ciki|(ci ≥

0∀i) ∧
∑
i=1 ci = 1} such that f =

∑M
i=1 fi, fi ∈ Hi. By Rosasco et al. [2009] , the problem of multiple

kernel learning under square loss can be formulated as a elastic-net-regulated problem:

argmin
f∈H

{ 1

n

n∑
i=1

(

M∑
j=1

fj(xi)− yi)2 + µ

M∑
j=1

||fj ||2H + 2τ

M∑
j=1

||fj ||H
}

(1)

1.2 Iterative PFBS Algorithm

By Theorem 1 of Rosasco et al. [2009], since the penalty function is lower semicontinuous, coercive, convex
and one-homogenous, solution to problem 1 f∗ is the unique fixed point of the the contractive mapping with
step size σ:

Tσ(f) = (I− π τ
σK

)
(
f − 1

2σ
∇f [

1

n
||f − y||2]

)
where π τ

σK
(g) is a project operator which project g toH′ = {f ∈ H

∣∣ ||fj ||Hj ≤ 1
τ/σ ∀j}.

Above mapping can also be written in terms of Kernel matrices by generalizing representer theorem and write
f∗j (x) =

∑n
i=1 α

T
jikj(xi, x) = αTj kj(x), where αj and kj(x) are n× 1 vectors. Further, if denote:

αMn×1 = (α1, . . . ,αM )T , k(x)Mn×1 = (k1(x)
T , . . . ,kM (x)T )T

KMn×Mn =

K1 . . . KM

...
. . .

...
K1 . . . KM

 ,where Ki = ki(.)ki(.)
T

yMn×1 = (yTn×1, . . . , y
T
n×1)

T

The contraction mapping can be written as:

Tσ(f) = (I− π τ
σK

)
([
(1− µ

σ
)α− 1

σn
(Kα− y)

]T
k
)

where (2)

(1− µ

σ
)(α)j = S τ

σ
(K,α)j =

αTj√
αTj Kjαj

(
√

αTj Kjαj −
τ

σ
)+

which is the soft-thresholding operator. We thus have below PFBS algorithm:

Algorithm 1 MKL PFBS algorithm

1: procedure rls dual mkl pfbs(K, y, (τ, µ, σ))
2: α0 = 0
3: for p = 1 to MAX ITER do
4: αp0 = (1− µ

σ )α
p−1 − 1

σn (Kαp−1 − y)
5: αp = S τ

σ
(K,αp0)

6: end for
7: return fMAX ITER = (αMAX ITER)Tk
8: end procedure

1.3 Implementation Detail

1.3.1 Block-wise Update

Notice that in (2), Tσ updates α by group, it is thus possible to write T at pth step as:

T pσ = [T pσ,1, T
p
σ,2, . . . , T

p
σ,M ] with T pσ,j = S τ

σ

(
K,α0

)
j

α0 = (1− µ

σ
)αp−1j − 1

nσ
∗ εp−1 where εp−1 = (

M∑
j=1

Kjα
p−1
j − y)
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by using above method we are able to avoid working directly with theMn×Mnmatrix K (as defined earlier in
section 1.2), which led to reduced memory cost 1 and reduced difficulty in selecting stepsize and regularization
parameters.

1.3.2 Choice of Stepsize

Based on Bach et al. [2004], it can be shown that a suitable choice of σ is σ = 1
4 (a ∗ Lmin + b ∗ Lmax) + µ,

where (b, a) denotes the lower/upper bound on the eigenvalue of K, and (Lmin, Lmax) denotes the lower/upper
bound of ∇2Q(f,y). Specifically, in the context where Q is square loss (i.e. ∇2

f Q(f,y) = 2), we have:

σ =
1

2
(a+ b) + µ

A naive choice of awould be the largest eigenvalue of KnM×nM , which not only is computationally expensive
but also leads to overly slow convergence. In pactice, if denote the maximum eigenvalue of each kernel matrix
Kj to be aj , it is found that setting a to be max

j∈{1,..,M}
(aj) is suffice to guarantee convergence. This is because

the mapping αp−1 7→ αp0 can be written as:

α0 = (1− µ

σ
)αp−1j − 1

n
∗
M∑
j=1

1

σ
(Kjα

p−1
j − y

n
)

As shown, in αp−1 7→ αp0 we actually updated αp−1 M times, with step size 1
σ (Kjα

p−1
j − y

n ) in each step.
It is thus sufficient to find a a that properly scale the magnitude of all ||K||, leading natually to the choice
a = max

j∈{1,..,M}
(aj).

1.3.3 Role and range of µ and τ

In the context of MKL PFBS, µ are usually selected to be a small positive constant in order to guarantee the
contraction property of Tσ is a contraction without compromising prediction accuracy. More specifically, since
the Lipschitz constant for Tσ is Lσ ≤ |1 − µ

σ |. We may follow [Mosci et al., 2010] and setting directly the
default candidate values of µσ to be within the range of [0, 0.1] during parameter selection.

The ratio τ
σ serves as a cutoff value for |fpj | =

√
αTj Kjαj in the soft-thresolding operator S τ

σ
, with higher

τ
σ leading to stronger spasity penalty on kernel effect estimates. In practice, we restrict the upperbound of the

candidate values to be 1
M ∗ ||y||/

√
maxj ||Kj ||, which approximate the average upper bound of

√
αTj Kjαj

since:

||αTj Kjαj || ≈ ||αTj (
1

M

∑
j

Kjαj)|| =
1

M
||αTj y||

≤ 1

M
||y||||αTj || =

1

M
||y||||αTj KjK

∗
j ||

≤ 1

M
||y||2/||Kj ||

1.3.4 Continuation strategy on regularization path

A core component of the τ parameter selection is to compute the regularization path over τ1 > · · · > τn,
which can be computed efficiently using continuation strategy, i.e. using ατk−1 calculated for τk−1 as the
initial value for ατk . Note that the corresponding solution can be usually computed in a fast way since it is
very sparse, though possibly under-fitting the data [Rosasco et al., 2009].

2 Software Structure and Usage

2.1 Software Detail

GURL MKL is developed to work seamlessly with the gurls function in GURLS package. A complete list
of GURLS mkl functions and the related option field opt.mkl can be found in Appendix. As shown in
Figure 1, a typical GURLS mkl pipeline is composed of 4 core functions for, respectively, generating multiple
kernels (kernel mkl), hold-out-based L1/L2 tunning parameter selection (paramsel homkl), PFBS-
based dual parameter estimation (rls dual mkl), and dual prediction (pred dual mkl). The configuration
of the entire process is controlled by the option struct opt.mkl, whose important fields are:

1O(Mn2) instead of O(M2n2)
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Xn×d, yn×1

User Specified
OPT

Routine Produced
OPT

kernel mkl

mkl.
kernel type

kernel.K mkl

paramsel
homkl

mkl.npar/
mkl.parrange

paramsel.
par mkl

rls dual mkl

mkl.par mkl

rls.C mkl

pred dual mkl perf

Figure 1: GURLS mkl process

- For Kernel Generation:

• mkl.type: A cell array specifying the type and parameters for the kernels to be used. For exam-
ple, if we want to use 3 Gaussian kernels with σ = 1, 2, 3 and 1 Linear kernel, then mkl.type =
{{’kernel rbf’, 1 : 3}, {’kernel linear’, 0}}. Kernel type must be the name of an existing
GURLS kernel function. Currently only RBF and linear kernels are supported. User must set this field
by hand.

- For tunning parameter selection:

• mkl.npar: A 1 × 2 cell array of scalers indicating the number of candidate L1/L2 parameters to be
used for parameter selection. paramsel homkl will guess the candidate parameters as discussed in
section 1.3.3. By default mkl.npar = {[25], [5]}.
• mkl.parrange: A 1 × 2 cell array of vectors indicating the candidate L1/L2 parameters to be used

for parameter selection. paramsel homkl will ignore mkl.npar if mkl.parrange is specified.

- For dual parameter estimation:

• mkl.npar mkl: A 1 × 2 cell array of scalers indicating the L1/L2 parameters to be used for
rls dual mkl. User may use this field if they prefer to set the parameter directly without going
through the parameter selection stage.

Aside from the fields listed above, opt.mkl also contains other fields that are used to control vari-
ous techinical aspects in parameter selection (e.g. whether to use continuation strategy) and PFBS-based
optimization (e.g. maximum number of iterations allowed, convergence criteria). A complete list of
these option fields can be found in Appendix B. These fields can be set automatically by the procedure
utils/gurls defopt mkl.

2.2 Example Pipeline

Below example shows how to execute a GURLS mkl pipeline through the GURLS framework:

1 %%%% Step 1: Option Configuration %%%%
2 name = ’mkl_demo’;
3 opt = gurls_defopt(name);
4 opt = gurls_defopt_mkl(opt); % initialize opt.mkl
5 opt.mkl.type = ... % specify kernel type/parameter by hand
6 {{’kernel_rbf’, 1:5}, {’kernel_linear’, 0}};
7

8 %%%% Step 2: Task Sequence Configuration %%%%
9 opt.seq = {...

10 ’split:ho’, ...
11 % kernel_mkl MUST be called before paramsel/rls
12 ’kernel:mkl’, ...
13 ’paramsel:homkl’, ...
14 ’rls:dual_mkl’, ...
15 ’predkernel:traintest_mkl’, ...
16 ’pred:dual_mkl’, ...
17 %perf support only rmsestd (regression)\macroavg (classification)
18 ’perf:rmsestd’};
19

20 opt.process{1} = [2,2,2,2,0,0,0];
21 opt.process{2} = [3,3,3,3,2,2,2];
22

23 %%%% Step 3: Execute Task Sequence %%%%
24 gurls(Xtr, ytr, opt, 1);
25 gurls(Xte, yte, opt, 2);

As shown, to execute a GURLS mkl pipeline, one only need to tweak their standard GURLS pipeline as below:
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1. In Option Configuration step, after initializing opt using gurls defopt:
(a) Initialize opt.mkl using gurls defopt mkl (Required)
(b) Specify opt.mkl.type by hand (supports only kernel rbf and kernel linear).
(c) Optionally, tweak mkl.parrange, mkl.npar, etc to customize paramsel procedure.
(d) Optionally, specify opt.mkl.par mkl to skip paramsel procedure.

2. In Task Sequence Configuration step, one must
(a) Call kernel mkl to compute MKL kernels.
(b) Use either rmsestd (for regression) or macravg (for classification) for performance metric.

3 Example

In this section we apply GURLS mkl to artifical and real datasets to illustrate ways to visualize estimation
results and customize pipeline. Script for these examples can be found in folder gurls/demo under file
names demo mkl *.m.

3.1 Regression on Gaussian Data with Mixed Kernel

In this example, Gaussian data is generated under a mixture of linear and RBF kernel. Namely, for
αn×1,βp×1 ∼ MVN(0, I), Xn×p = [x1, . . . ,xp]

iid∼ MVN(0, I), and K = RBFKernel(X, σ = 10),
we generate response as y = Xβ +Kα.

Setting n = 500, p = 50, we apply MKL framework to above data with M + 1 kernels, including M = 50
RBF kernels with 2σ2 ∈ [1.20,...,M−1], and one linear kernel. We perform 5-fold hold-out parameter selection,
with 5 candidate λs and 25 candidate τ ’s within the range specified in section 1.3.3. Note since contiuation
strategy may underfit the data, we choose not to use continuation strategy in this task by setting:

1 opt.mkl.strategy = false;

We considered standardized RMSE as the performance metric for regression, which is defined as:

rmsestd(ŷ,y) =

√
||ŷ − y||22
||y||22

As shown, standardized RMSE is more informative than RMSE since it can be interpretated as the percentage
of variation in y that is not explained by ŷ, and it is expected to range between 0 and 1.

After parameter selection, we can inspect the effect of tunning parameters on the norm of kernel-specific
effects ||αj ||2 and the model fit (rmsestd) by considering the regularization path along candidate τ ’s, fixing
λ at the selected value. This can be accomplished using the plot mkl path function with below code:

1 plot_mkl_path(X_tr, y_tr, opt, ’norm’); % Figure (a)
2 plot_mkl_path(X_tr, y_tr, opt, ’perf’); % Figure (b)

(a) Kernel Norms (b) Standardized RMSE

Figure 2: L1 Regularization Path for Regression on Gaussian Data, with Continuation Strategy

As shown, as τ increase, all ||αj ||2’s decrease uniformly except for the linear kernel (the green line), whose
effect grow slightly when the effect of all other RBF kernels are penalized toward zero, but eventually start
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decreasing when τ become too large. The hold-out standardized RMSE increased uniformly with τ , indicating
the fact that using multiple kernels with moderate sparsity requirement is preferred in current senario.

We may also perform explicit kernel selection among the candidate kernels by inspecting the size of ||αj ||2,
which is stored in opt.paramsel.norm path as a nL2 × nKernel× nholdout matrix. For example, if we
want to find out the 5 most important kernels, we can define a term kernel importance which is the sum of
||αj,τk ||2 over all possible τk’s (which is an approximation of the area under the kernel regularization paths in
Figure 2 (a)). This can be calculated as:

1 norm_summary = median(opt.paramsel.norm_path, 3); % median norm across holdout
2 kernel_importance = sum(norm_summary, 1); % sum of norm across tau
3 [norm_value, norm_order] = sort(kernel_importance, ’descend’);
4 >> [norm_order(1:5); norm_value(1:5)]
5

6 ans =
7

8 51.0000 50.0000 49.0000 48.0000 47.0000
9 5.9023 4.1103 4.1069 4.1027 4.0976

As shown, GURLS mkl selected the linear kernel (norm order = 51) as the most important kernel, and the five
rbf kernels (norm order = 47 : 50) with the largest sigma values (σ ∈ [46, 61]) as the most important RBF
kernel. It is slightly surprising to see that the RBF kernel corresponding to the true data generation mechanism,
i.e. RBF kernel with σ = 10, is not selected. It is likely due to the fact that in the soft-thresholding operator
S τ
σ

we imposed uniform threshold ( τσ ) on all kernel specific norms
√
αTj Kjαj , hence implicitly perfering

Kj’s with larger norm/eigenvalue.

Finally, we compare the performance of current model against the true MKL model using data generation
kernel by checking prediction rmsestd on a validation sample of n = 200. The data generation model can be
fit directly without paramsel by supplying tunning parameters τ , λ:

1 opt.mkl.type = {{’kernel_rbf’, 10}, {’kernel_linear’, 0}};
2 opt.mkl.par_mkl = {[0], [0]};
3 opt.seq = {... % skip paramsel
4 ’split:ho’, ’kernel:mkl’, ’rls:dual_mkl’, ’predkernel:traintest_mkl’, ...
5 ’pred:dual_mkl’, ’perf:rmsestd’};
6 opt.process{1} = [2,2,2,0,0,0];
7 opt.process{2} = [3,3,3,2,2,2];
8 gurls(X_tr, y_tr, opt, 1);
9 gurls(X_va, y_va, opt, 2);

10 opt.perf.rmsestd
11

12 ans =
13

14 0.0601

As seen, the validation rmsestd under true data generation model is 0.0601, while the validation rmsestd
for our current model is 0.0675. We have achieved similar model performance using MKL model without
knowledge of the true data generation mechanism.

3.2 Classification on Ionosphere Data

We take this example from Xu et al. [2013] to illutrate the usage of GURLS mkl in classification tasks. In this
example, we consider the Ionosphere data taken from the UCI repository 2 describing radar data collected in
Goose Bay, Labrador to detect whether there is evidence of some type of structure in the ionosphere. Following
Xu et al. [2013], we applied MKL framework with 5 RBF kernels with σ = 1 : 0.2 : 4 and 1 linear kernel. The
model pipeline is similiar to the pipeline for regression except that one need to set the hold-out performance
metric to macro avg:

1 opt.hoperf = @perf_macroavg;

The accuracy on validation sample is 0.9857, comparible to the performance of L2 MKL (i.e. RLS MKL) in
Xu et al. [2013].

2 https://archive.ics.uci.edu/ml/datasets/Ionosphere
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Appendix A List of GURL mkl Functions

1. Parameter Specification
• utils/gurls defopt mkl: generate default option struct opt.mkl

2. Kernel Generation
• kernel/kernel mkl:

use information supplied in opt.mkl.type to generate MKL kernels. Supports rbf and linear kernels.
3. Parameter Selection

• paramsel/paramsel homkl
Using kernel specified in opt.kernel.Kmkl to perform hold-out parameter selection. Candidate tunning
parameter are either taken directly from opt.mkl.parrange or guessed automatically. Continuation
strategy can be activated/deactivated using opt.ml.strategy = true/false.
• utils/paramsel L1ratioguesses: function to guess candidate L1 tunning parameters.

4. Optimization
• optimizers/rls dual mkl

interface to pass the selected tunning parameter in opt.paramsel.par mkl or user specified tunning
parameter in opt.mkl.par mkl to the core optimization routine rls dual mkl pfbs.
• optimizers/rls dual mkl pfbs

Core optimization procedure. Read in tunning parameters and other techinical parameters
(iter max, crit. etc) from opt to perform PFBS, then return estimated α.
• utils/ConsoleProgressBar

Utility function to plot the progress of holdout selection/PFBS fitting.
5. Prediction

• kernel/predkernel traintest mkl: generate prediction kernels.
• pred/pred dual mkl perform prediction

6. Performance assessment
• perf/perf rmsestd: Calculate standardized RMSE (||ŷ − y||2/||y||2)
• summary/plot mkl path:

Read in opt.paramsel.perfpath and opt.paramsel.normpath generated by paramsel homkl to plot
the regularization path of kernel-specific estimate norm/model performance metric over candidate τ ’s.

Appendix B List of GURL mkl-related Options
1. Option mkl

• type: kernel function and parameter value used for the M kernels, M × 1 cell array of structs
• parrange: candidate tunning parameters, 2× 1 cell array of vectors
• npar: number of candidate tunning parameter to guess, 2× 1 cell array of scalers.
• smallnumber: lower limit of non-zero candidate tunning parameters.
• verbose: whether to print fitting progress in paramsel/rls. e.g. {′paramsel′, true,′ rls′, true}
• iter max: max number of iteration for PFBS in paramsel/rls. e.g. {′paramsel′, 1e4,′ rls′, 1e5}
• crit: convergence criteria on performance metric in PFBS. e.g. {′paramsel′, 1e− 3,′ rls′, 1e− 5}
• strategy whether to use continuation strategy in paramsel.
• par mkl tunning parameter to be used for rls, if one wish to skip paramsel.

2. Option kernel
• K mkl n× n× M matrix specifying MKL kernel matrices
• eig mkl M× 1 doubles of the norms (largest eigenvalue) of the largest matrix.

3. Option paramsel
• par mkl: (µσ ,

τ
σ ) selected by paramsel, 2× 1 cell array.

• perf path: holdout performence (rmsestd/macroavg) along candidate τ , (λ fixed at selected value).
• norm path: estimated ||αj || (rmsestd/macroavg) along candidate τ , (λ fixed at selected value).
• guesses mkl: candidate parameter used in paramsel, 2× 1 cell array of scalers.
• cont strategy: whether continuation strategy is used in paramsel, logic.

4. Option rls
• C mklM × n estimate of αj’s.
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